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Swarm field dynamics and functional morphogenesis
Mark M. Millonas
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A class of models with application to swarm be-
havior as well as mary other (ypes of complex sys-
tems is studied witkh an emphasis on analytic tech-
niques and results. Specizl attention is given to the
role played by fluctuations in determining the behav-
lor of such systems. In particular it Is suggested that
such fluctuations may play an active role, and not just
the usual passive one, in the organization of structure
in the vicinity of a non-equillbrium phase transition.
One model, that of an ant swarm, is analyzed in more
detail as an illustration of these ideas.

1 Introduction

In recent years there has been a great deal of interest in
complex adaptive systems. Typically such systems are
composed of a number of fairly simple interacting com-
ponents which give rise to some form of global coopera-
tive behavior. Sometimes this global behavior is studied
in its own right, and sometimes it is allowed to evolve
under external selection pressures which act according
to some evolutionary algorithm on the local rules. Of-
ten the source of order, or an ordering transition in such
systems is due to direct couplings between the basic com-
ponents. These models often correspond either directly,
or to some generalization of Ising and Spin glass type
models in statistical physics. Concepts such a (rustra-
tion, multiple basins of attraction, and rugged fitness
landscapes play an important role in the understanding
of the complex behavior of such system.

In this paper a somewhat different approach is pur-
sued which is In line with the basic principles acting be-
hind a varlety of systems in nature, particularly biolog-
ical ones. Here we study what will be called sigmergic
procsessees, or statistical swarm flelds, to be defined
as systems of sutonomous agents, referred to as parti-
cles, which interact not via direct couplings, but through
s medium of environmental morphogenetic fields. 'The
morphogenetic flelds both determine the behavior of the
individual agents, and are in turn acted on by the agents.

There are many good reason why one would want to
study such processes or swarms. Swarms are a useful
paradigmatic example of a coruplex adaptive systems in
which a number of siinple components exhibit emergent
behuviom on the collective scale. ‘T'hese emergent prop-

erties, when taken in the proper context such as an ant
swarm, may represent biological functionality or “swarm
intelligence”. Such a study might also be expected to
shed light how cooperative behavior evolved. and on the
evolutionary distance between various types of swarm
behavior. questions of profound interest to social biol-
ogists. Lastly such process allow an exploration of the
relationship between non-equilibrium phase transitions
and complex behavior in model systems of interacting
autonomous agents.

In the view of the author, some of the recent ap-
proaches to the problem of the collective behavior of
autonomous agents, and to artificial life in general. have
several weaknesses. One of the purposes of this work
is to address some of these inadequacies via the appli-
cation of more rigorous techniques. Thus, in addition
to obtaining analytic type results for a class of specific
systems with applications to swarm behavior, one of the
main goals of this paper is the introduction of a general
set of techniques which can be used as a framework for
the study of a great variety of such systerns.

The root inadequacy of much of the work in this
area is a general lack of emphasis on analytic results.
and an over dependence on computer simulations. It is
quite often the case that, even when an analytic tool is
available for the study of a particular problem, muany
researchers are still content with sitnulation. This is the
resul. of an emphasis on behavior alone, instead of fami-
lies of behavior which should be the true object of study.
The ability to ssimulate complez behawnwor s not the same
thing as the ability to understand it. Although there
can be little doubt as to the value of simulations, par-
ticularly as a laboratory for the expluration of the ba-
sic phenomena, simulations almost never provide certain
types of information which are central to the most am-
bitious goala of artificial life. Analysls can often provide
information about familles of behavior which situlation
is simply unable to provide, and it is precisely this in-
formation which is of central importance to a general
understanding of complex systems. This is particularly
the case when one seeks to understand any system upon
which adaptation on the space of behaviors plays, or has
played, an important role.

Another inadequacy which commonly besets hoth
the conceptual and modeling process Is the lack of suill:



cient appreciation of the role of fluctuations. It is inter-
esting to note that even with the current emphasis on
bottom-up modeling. there is still a very prevalent top-
down lack of familiarity with some of the more profound
effects of noise on complex systems. Fluctuations can in
fact an play a constructive role in the creation of order
and complex behavior going well beyond the passive ini-
tiation of order producing transitions via an amplifica-
tion process,! to the active production of structure which
has no deterministic analog,? a fact which is still not
sufficiently well understood by many researchers. Most
complex adaptive systems will fall into this category
since fluctuations in such systems are often large, and
usually enter in a nonlinear, multiplicative way. This
is frequently the result of the necessary balancing act
between the constructive poles of reliability and adapt-
ability. Therefore, in this paper we emphasize the points
in the modeling process where fluctuations enter into the
description. TL:5 is made possible by the fact that we
will start with a full theoretical formulation. which con-
tains all the information about fluctuations we may wish
to make use of. It is then possible to work backward to-
ward the full theory through a sequence of successively
better approximations which we hope will capture im-
portant characteristic of the full system.

Since there is not space here for a detailed exposition,
many results have been outlined. References are made
to the appropriate sources for those who wish to see a
full exposition.

2 Stigmergic Processes
2.1 Basic ingredients

Stigmergic processes are here introduced as a generaliza-
tion of the concopt of stigmergy (from the Greek mean-
Ing “incite to work” ) Introduced by Graseé® as a hypoth-
enis about the collective nest building of soclal insects.
‘The hypothesis of stigmergy, as described by Wilson,* is
that it is the work already accomplished, rather than di-
rect communication among nest mates, that induces the
insects to perform additsonal lador. The concept of stig-
mergy has also been invoked more recently in regards to
swarm behavior.®

"The more generalized idea of a stigmergic procoss

'Q3. Nicols, & I. Prigogine. Self-Organisaiton in Nonepushbrium
Syslerna, Wiley (1977).

IW. Horsthenke, & R. Lafever. Noise induced Tremmtions,
Springer-Verlag (1084).

IP. P. Gromsé. Kxzperrenira 18, 188 (1089).

‘E. O. Wilson. The Insect Societres, Belknap (1971).

8G. Thersulea, & J.-L. Deneubourg. S5 Worlang Paper 93
(9-048 (1092).

is realized here in systems composed of three basic in-
gredients. The frst ingredient is a particle dynamies, ~
The particles represent the autonomous ients or or-
ganism. and the dynamics describes how they more in
space. Nince we are dealing with very unreliable com-
ponents, this dynamics is necessarily statistical in de-
scription. The second ingredient is the morphogenetee
field dynamics. There will be a field. or number of ticlds
describing the environment which the organisms ense.
and in turn influence by their actions. The dynamics of
the morphogenetic fields describes how the environment
changes with time. Lastly. some form of coupling is made
between the particles and the fields. This coupling takes
the form of a behavioral function which tells the parti-
cle how to move in response to the morphogenetic fields,
and in turn, how the particles act back on these «lds.
The stigmergic element is imposed by the simplilication
that the particles are not influenced by each other via
direct couplings, but only throuzh the environment,

2.2 Particle dynamics

The dynamics of a particle is a Markov process on
some finite state space X, which may be either contin-
uous or discrete. The particle density p(x, r) obeys the
Master equation

Op(x,
D) = [ Weixlyoty, )

-We(y|x)p(x.7)} dPy, (1)

where W (x]y) is the probability density to go from state
y to x at time 7. All of the statistical properties of the
particle low can be calculated in theory from the master
equation, and we will assume for our purposes that the
Ructuations in the system are primarily driven by these
statistical properties, which are due to the discreteness
of the particles, and random nature of their wotion.
As we shall see, our description of the morphogenetic
fields will not include intrinsic Auctuations, which are ex-
pected to be of negligible importance when compared to
the fluctuations of the particle density. This is becawse
such ficlds will general be composed of a vast number of
components, for example, molecules of some pheromonal
substance, 50 we can effectively modol themn ns continu-
oun valued quantities at every point in space. Note that
this by does not mean that the morphogenetic fields will
not fluctuate, only that these fluctuations will be driven
by the particle fluctuations only.

Most generally we will be interented In open systems,
where there is both a llow of particles into .\’ from ex-
ternal sources, and a flow of particles out of the system



at various points. [n such a case it is useful to intro-
duce an extended space of states X+ = .¥ +e. where e
represents states external to X'. which play the role of a
particle sink. In this case we can write

I+
%’E_Tl = /v’{u’r(xly)p*(y.r)

Wi (y|x)pt(x. r)}dDy + fr(x). (2)

where p*(x,7) = p(x.T) + pe(T) 6(x — e) is composed
of a continuous part p(x.7) on /X, and a discrete part
pe(7T) on ©. The inhomogeneous term f,(x) is the flow
of density at x into ¥ from an outside which we will
regard as being entirely independent of the set of states
e.

As a consequence of the local conservation equation

f We(ylx) dPy =1,
X

the Master equation for a closed system can be put in
the form

Bp(x T)

(3)

= [ Wrixlynty, ) d®y. ()
Likewise as a consequence of
[ Wiyl Py =1, ()
X+

for open systems, the Master equation can be put in the
form

dpf(x, 1)
or

where W, (x|y) =

= [, Welxly)o* (v, 7) d% + £1(x),(6)

We(xly) = 6(x - y).

2.3 The morphogenetic flelds

The second basic element of a Stigmergic process is a
morphogenetic lield o(x, 7), or flelds a;(x, 7) on X. The
morphogenetic flelds represents Lhe set of environmental
stimuli which the particles respond to, and act on. In
general the dynamics of these fields will be described by

partial differential equations of the form 8,0 = ®|a, p: 7|,

where m; are a set of fleld parameters. A few examples
will be mentioned as illustrations, but thero are a nearly
endless variety of botk types and dynamics of the stim-
ull.

the pheromone by the organisms. In the case of v mobile
pheromone, we can add a diffusion term

(X, T)

=D,V -k rnp. (™)

where D, is a diffusion constant.

A more complicated situation could be envisioned in
the case of nest building. Suppose we now have a two
component field (gp, o). where g, will be a pheromonal
substance, and o, will be nest material. The nest mate-
rial is picked up at a certain rate N, by the insects. In
addition the material is laid down in proportion to some
function h{on) of the amount of nest material present.
We can write

don(x, 1)
or
where po is the density of workers not carrying nest ma-
tenal, and p, the densities of worker who are carrying
nest material. In this case, it is the nest material itself
which emits pheromone at a rate np, where we might
write for the evolution of the pheromonal tield

==K 0n o +7’h(‘7n) ~. )

Jop(x,7)
or
The concentration of the pheromone ¢, will in turn de-
termine where the insects go. and hence the building
behavior.

This last type of model illustrates an important point
about stigmergy. Originally the concept wus used to
refer to behavior which is stimulated only by work al-
ready done, that is, by the nest materinl. For our pur-
poses there is no practical distinction between the con-
struction of nest structures, and the “construction” of
a pheromonal field. They play equivalent roles in the
theory. Thus, in the present generalization, the criti-
cism of the concept of stigmergy that in msny situations
pheromonal stimuli contribute wlong with other environ-
mental stimuli i entirely irrelevant. The basic processes
are the same whether the organism respond to the nest
or to the pheromonal field, or both, The models studied
here will be pheromonal field models. Another criticism.
that a stigmergic machine will in general be unable to
shut down when the job is finished, is patently incor-
rect. A closer look at the structure of such processes
revenls that such mechanisms are quite ewsily incorpo-

Do.vllap - Ep Up + ﬂp on- (lﬂ)

One of the simplest situations is a fixed one-component rated into the behaviors of a stigmergic process as de-

phoromonal fleld which evolves according to
Ha(x T)
T ot

where k measures the rate of evaporation, breakdown or
removal of the substance, and n the rate of emission of

-k O NP, ("

3

fined above. 'This is because the behavioral states nre
phuses separated by critical boundaries which rlepend
on the global environmental state. When the environ
mental state changes, the behavioral renponse enn piss
through such a phase transition point and shut on or off
in # very sharp manner.



Other types of systems which fall into this class are
swimming bacteria and algae.® physical trail formation,
the evolution of river networks.” diffusive transport in
polymeric materials.® population distribution models.
various types of fractal growth phenomena.? and devel-
opmental morphogenesis.'® Obviously such models can
take virtually limitless forms. Multicomponent particle
svstems can be considered in addition to multicornpo-
nent morphogenetic fields. We will limit ourselves here
to systems composed of one type of particle and one
type of morphogenetic field in order to emphasis the ba-
sic principles.

2.4 The behavioral coupling

The transition matrix W will depend on the morpho-
genetic fields. While the dynamics of these fields are
somewhat fixed by the physical situation which is being
modeled, the response of the particles to the field as en-
coded by the transition matrix might represent a consid-
erable range of behaviors. As we shall see, small changes
in the microscopic behaviors of the particles can resuit
in large changes in the global behavior of the swarm,
or particle field. This variability has significant implica-
tions not only for the behavioral response of the swarm
to external stimuli, but also in the evolution of coop-
erative behavior. Wilson has remarked that an under-
standing of how this occurs would constitute a technical
breakthrough of exciting proportions, for it unll then be
possible, by artificially changing the probability matrices.
to estimate the true amount of behavioral evolution re-
quired to go from [the behawor of/ one species to ... that
of another.'! He has further remarked that such large
hehavioral changes resulting from small changes in the
individual dynamics would provide evidence that social
behavior evolves at least as rapidly as morphology in
social insects. This could provide an explanation why
beharoral diversity far outstrips morphological dsversity
at the level of species and higher tazonomsc categories in
social insects.

We will be interested in local dependencies, that is,
where the individual behavior is determined only by lo-
cal stimuli. This models the somewhat inevitable fact
that the individual organism in the swarm have little or
no knowledge of the state of the swarm as a whole. The

83 0. Kessler. Comments Theoretical Biology 1, 35 (1989).

'S, Kramer, & M. Marder. Phys. Rev. Lett. 88, 205 (1992).

"R W. Cox, & D. 8. Coben. J. Polymer Sei. B 27, 589 (1089),

YT Viesak.  Fractal Growth Phenomena, World Scientitic
(1989).

W], E. Mittenthal, In: Lectures in the Sciences of Complenty
(D). Stein, o), Addison- Wesley (1989).
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collective response of the swarm. on rhe other hand. i
capable of a globa! i ation of environmental infor-
mation. [y th:s s:r;slegn:iger:x;rrrl at any given tme can
be in a state which represents a nonlocal integrated re-
sponse to the external stimuli. One of the main goals of
the present work is to show how it is pussible lor lucal
individual behavior to lead to collective global hehavior.
and how this global behaviors is encoded by the local
dynamics.

In addition to its dependence on the local morpho-
genetic field, the transition matrix will depend on one
or more behavioral parameters m,, referred to as par-
ticle parameters. These parameters will determine the
response of the individuals to o. If o represents the
mput, the internal parameters represent the program-
ming of the “stigmergic machine”. These parameters
might vary from individual to individual. particularly
between members of different castes, but here we will
study swarms composed of individuals with identical be-
havior. In addition, the behavioral parameters might
change in response to external stimuli, or change on
the evolutionary time scale. A determination of the de-
pendence of the global behavior on the behavioral pa-
rameters, as well as on the swarm parameters such as
the number of participants, is the goal of the mcthods
used here. Once this dependence is known the range
and types of behaviors which can be encoded by vari-
ous classes of individual behaviors can be examined in a
more or less comprehensive way.

3 Simplifications

3.1 Adiabatic elimination of particle modes

In general the particle dynamics will be inhomogenous in
time since the morphogenetic fields will change in time
However, for many purposes we will want to make the
approximation that the morphogenetic fields, and hence
the transition matrix, changes very slowly on scales typ-
ical of the particle dynamics relaxation time. This may
often be true quite generally. However, this approxima-
tion is often quite good in the region of a non-equilibrum
phase transstion, even for systems where typically the
time scales are not well separated. This is because in
the region the unstable modes of a systems will exhibit
critical slowing down, and will relax on a time scale much
longer than the time scale of the stable modes. Sinece the
unstable modes can be viewed as fixed parameters which
determine the quasi-stationary stable modes, the stable
modes nre said to be slaved to the unstable modes. ' It
is precisely these regions of transition which we will be

"“H. tiaken. Syneryetscs, Third Fd.. Springer-Verlag (108:1)



most interested in. since the ordering behavior of such
systems is largely determined by these critical points.
In our case it is the particle modes which are the sta-

ble ones, and we will study the particle dynamics with
a transition matrix which varies quasi-statically. For
convenience we will work in the bra-ket notation where
p(x,7) = (xip(r)). and W(xly) = (x|W]|y). The left
and right eigenvectors of W are given by Wipyx) = A |py)
and (pa|W =. A {p,] respectively. The spectral decompo-
sition in terms of the eigenvectors of the operator W is
written as 3", [pa) (pal = 1. Eq. {1 can then be written
as

o .

5r1oa(T)) = Wlaa(r)), (11)
which has solutions of the form [px(7)) = e*"|px). We
normalize the eigenvectors according to (palpa) = 1.
The local conservation equations insure that (po|x) = 1.
and [y(x[pa) dPx = 8p». We can do likewise for the
homogeneous equation for An open system on extended
state space X ¥,

o
1ol () = Wt |ps (1) (12)

where W|p}) = Alp}). In this case all of the parti-
cles eventually flow into the adsorbing state e, so that
(xlpo) = Né(x — e).

The situation is, of course, more complicated when
there is a driving flow of organism into the network,
f(x) = (x|f), so that we have the inhomogeneous equa-
tion

o]

5210t (7)) = WHlpH(m) +11). (13)
We are only interested in the long time distributiors on
X, which are independent of any initial conditions. The
stationary states can be calculated,!®

Ios) = N|po) closed
Pl =\ Sapo Mat)0I1f). open

[n addition all the statistical properties of the fluctuation
nbout this value can be calculated from the master equa-
tion. To determine these luctuations for open systems
one must of course also specify the statistical properties
of the driving term |f).

The quasi-stationary particle densities will depend
on the morphogenetic fRelds over the cntire space X,
nnd on the external forces. In addition, since the transi-
tion tnatrix will depend on the particle parameters p,
the quasi-stationary particle density will also depend
on these parametem, p,(o, mp)(x, 7). Lot us consider

(14)

M. M. Mlloass. lu ALIFE [l (in prane, 1192a).

a general =et of morphogenetic field equations ito
dio.pmwyrl. The particle modes can be adiabatically
eliminated from the picture as discissed above, where
we obtain the set of stochastic partial ditferential order
parameter equations

Joix,T) | -

5 - Blo. p,io:mp| +yla. m,)E( L)y (1)
where g(e.m,) is a function describing the fluctuations
of the quasi-stationary particle density about its mean

value. and £(t) is gaussian white noise. (£(t)) = 0. (§(t)&(t')).

Since p. will depend on both the global state of &. and on
the global boundary conditions, this is a globally coupled
set of equations for the evolution of the morphogenctic
fields. Slaving of the particle field therefure allows an
explicitly coupled global dynamics to emerge from the
strictly local interactions of the model. providing a key
to how a globally integrated response may emerge from
a system of locally acting agents. This type ot global
coupling through separation of time scales could be ex-
pected to be of the greatest importance in self-organizing
systems composed of a hierarchy of processes. each act-
ing on a different characteristic time scale. In this paper
we will focus on how just :wo of these levels interact.

The noise in the system is of the multiplicative type.
since the strength of the Huctuations about the guasi-
stationary particle density will in general also depend
on o. In addition to amplifying an instability which
exists in the absence of noise. this type of Huctuation
can also produce transitions and ordered behavior in its
own right. Cne of the consequence of this fact is that
slaved particle field will constructively determine the
self-organization properties of the systems thmough us
Jluctuating properties, as well as through quasi-stationary
values. Thie is a fact which should be constantly be born
in mind when studying such models.

In many cases it may be necessary to proceed with
caution. ‘The steps outlined above will hold when the
fluctuations are small enough, that is, when g(e,m,)
is small enough. In many systems in nature, particu-
larly ones composed of very many parts, this assump-
tion is quite valid. However, if the system of particles
we are considering is a swarm, the fluctuations may not
be ymall vnough since the number of participants tmay
be relatively few. A much more detailed discussion of
these subjects will appear shortly.'4

M M Millonas. Phys. Kev. A (in preparation, 1993).



3.2 Detailed balance and the thermodynamic ‘To first order the tluctuations are given by thie densiny

analogy

For now we will consider the case where the transition
matrix takes the form

Wixiy) x f(a(x)) g(r). (16)

where f is some weighting function describing the effect
of the field o on the motion of the particles, and g(r) is
a probability distribution of jumps of length r = |x — y|.
When properly normalized the transition matrix is given
by

[ (o(x)) g(r)
Jf(a(y +r))g(r) dPr”

Transition matrices of this type obey the detailed bal-
ance relations

W(xly)f(a(y)) = W(ylx)f(a(x)).

The property of detailed balance allows us to determine
all the statistical properties of the quasi-stationary par-
ticle field.

An one-to-one analogy with a thermodynamic sys-
tern with energy U(o(x)) and temperature T = 3~! can
ve made if we set

f(a(x)) = exp (—BU(a(x))),

where any parameter T which affects f can be regarded
as a temperature parameter if f(o(x);1") scales like

f(o(x);a T) = f~(a(x); T). (20)

Wixly) = (17

(18)

(19)

Statistical quantities of interest can then be calculated
from the one particle partition function
Z = 3; [ dPx exp(=aU(o(x))) (21)
according to the usual prescriptions, where V is the total
volume »f the state space X. The N particle partition
function is Zy = ZV.
Let us partially evaluate the partition function over
tne volume u, of phase space with a given energy ¢,

z-3 ) 47 exp (=AU a(x))

L .
b v exp(—UJe). (22}

The mean particle density in the energy siate ¢ is given
by

(n,)

1T e =

1 dIndn N
He Ve

e —= exp(-0Je).(23)

(Pe) V7

dispersion of the particles in the € vnergy stiie,

e a2 1 0%lnZx _ pe [
{(3pe)?) = 5 —p 3 = (1 S

o 3 o e )('_‘l)
e ¢

‘The slaved particle field in energy state € can theu be
represented to lowest order in the fluctuations by

pe = (po) + ' {(Ap)?) &(0).

(23)

3.3 Fixed pheromonal fleld

We will now consider in greater detail one of the simplest
cases which has many applications in the area swarm dy-
namics, a fixed pheromonal field obeying the Eg. 7. The
field parameters are the decay rate x. and the emission
rate 7.

We will first illustrate the types of self-organization
possible by such a morphogenetic field, when driven by a
closed system of partirles obeying detailed balance. Af-
ter adiabatic elimination of the particle density the stu-
tionary condition on the pheromonal field can be written
o(y)f(a(x)) = a(x)f(a(y)).!® Let us arbitrarily pick
two different points x and y, and let r = g</0> be the
ratio of the pheromone densities at these points where
O< < 05,50 that 0 < r £ i. We can write the siationary
conditions as

g(f) = f(Fo5) ¢ f(a>) =0

We want to inquire about the roots 7 the equation g(r) -
0, that is, what are the number of possible ratios of
pheromone density at differing point of the stationary
distribution. One solution is always 7 = 1, "vhich corre-
sponds to the homogeneous distribution. The homoge-
neous distribution gives rise to a new branch of solutions
when g’(1) = 0, that is, at the point where the slope of
g(r) at r = 1 changes signs. The homogeneous state is
unstable when

(26)

T

Y(-Y) > ~ ' (&1 )
where x(0) = -U’(c) is known as the chemotactic fac-
tor, which it analogous to a force, and v is the mean
value of ¢, where v = Nn/Vx. Thus, for small values
of the fleid density the fleld must be spatially homoge-
neous, g(x) = v, and at a critical value of the nean
fleld density this homogencous solution becomes unsta-
ble. In general there will be a broken symmetry solution
F < 1. ‘These solutions correspond to situations where
the pheromonal fleld is in a bimodal state where it can
thke one of two possible values at each point.

P lbid.
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Figure 1: Typical stabiltiy curve g(r)

The mean field order parameter equation for the
fixed pheromonal field is
Oo(x,T)
or

= -k 0o +1n (p(o))

nVf(o)
JdPx' f(a(x'))

The bimodal field values can be deterinined from Eq. 28
by noting that

==K0+ (28)

7 [ Hot) dPx = ut (@) +um g7 (29)

where ut and 4~ are the fractions of the total volume in
state space which take the field values ¢+ and o~ respec-
tively. The stationary values are given by the solutions
of the fixed point equations

ot =4(1+v)[L +v/R(‘7+"7-)]—l

|

(30)

where R(x,y) = f(o(x))/f(o(y)), and v = u~/u*.
These lead to an implicit equation for R,

o” =4l +tv)v+ R(o*.a')]'l,

0=&(R;v,v,mp)
Ef(lf)liﬁ—);"'p)n—f(z(—_:_:'/‘vi%;’rr)- (31)

The roots R of % can then in principle be found as func-
tions of v, v, and the particle parameters », which in-
fluence the transition function f.

In addition it can be shown!® that if f is strictly
excitatory (f/ 2 0) the function

R
¥(R; 00, v, 1) = /0 dz ®(a; do, v, 7). (32)

1®Millonas (1992s).
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Figure 2: Transiton functions for varying J and #.

is bound from below,

_f2(00(1 +u)w)
2f(0:m)

V(R;0q,v,7) 2 (33)
strictly decreasing ¢ < 0. W is therefore a Lyapunov
function for the pheromonal field. Stable fixed points
R are determined from &'(R) = 0 and ¢"(R) > 0. and
critical points by ¢(R;7,) =0 and ¢’(R:7,) = V.

4 Ant Swarms

4.1 Microscopic ant behavior

The microscopic dynamics of ants can be described
by the pheromone energy function

U(c) =-In (1 +

id 34
1+ 60) ' ()
where o is the pheromone density. and 6 is a dimen-
sionless behavioral parameter.!” The function f(o) is
given by Eq. 19, and the particle parameters are then &
and T. The temperature parameter T = 1/J describes
the internal randomness of the response of the ants to
the pheromonal field. This function is based approxi-
maiely on a model for Osmotropotaxi (scent gradient
following),'® and on experimental observations of actual
ants.!? For the case where the density of ants it low.
and hence the pheromone density is low (o << 1/9),
we can make use of the approximate energy function
Uo(o) = = In(1 + o). The constant 1/6 will be known ns
the capacity. When « approaches 1/4 the ants respond
less accurately to pheromone gradients.

An illustration of this effect is shown in Figure 2. A
given current of organisms I flows into a junction from

"Millonas (1403).

%V, Calenbubr, & J.-L. Deneubourg. J. Theor. Hwl. 138, 150
(1991).

19 .L. Doneubourg. et. al. J. insect Hehav, 32 159.



the left. On the lower branch the pheromone density is
fixed at oo, and on the uppet branch o is allowed to vary.
T(c). the proportion of the current which flows into the
upper branch, is given by the sigmoidal function

T(o) = [1 + exp(3e(0)/€(00))] ™" (35)
The plots on the right of Figure 2 shows T(a) for varying
values of 3 and 8. The upper plot. where é is fixed, shows
the influence of increasing the temperature (lowering J3).
As the temperature increases the threshold response be-
comes less and less pronounced. In the opposite limit
3 — 00, T(o) would be a step function 8(o - ag). In
this limit all of the ants would choose the branch with
the greatest pheromone density. I the lower plot the
noise level is fixed, and the capacity 1/6 is varied. It is
interesting to note that the effects of decreasing the ca-
pacity with fixed temperature are similar to the effects
of increasing the temperature with fixed capacity. When
the density of the ants increases, the pheromone density
increnses up to and beyond the capacity, the qualita-
tive effects on the behavior of the ants is the same as
if the temperature was increased. This gives the swarm
roughly the ability to modulate its temperature by mod-
ulating its numbers.

This can be made more clear by defining an effec-
tive temperature factor 8(c) through the relation f(o) =
exp(—08Uo(c)/8(c)). 6(c) roughly measures the effective
change in temperature as a function of the pheromonal
field when compared to the case where § = 0, which cor-
respond to the energy function Up. The effective tem-
perature is then given by 8(g)T where

In(l +1-+-?5;)

In(1 +0) (36)

0(c) =
Fig. 3 illustrates the increase in the effective temper-
ature with increasing o for three different values of 4.
Since increasing the temperature tends to decrease ste-
bility, we might expect any organized behavior to break-
down when the number of participants grows too large.
It is this ability or the swarm to self-modify its tem-
perature which allows it, in a sense, to traverse its var-
ious phase transition boundaries. Such boundaries are
of crucial importance in self-organization and emergent
phenomena, and it has been proposed that the ability to
sell-organize at or near these boundaries is at the heart
of adaptive, emergent biological systems.

4.2 Order parameters and critical exponents

'The effect of the slaving of the stable modes of a sys-
tem at a critical point is to reduce the dimensionality of

1.5
0=0.1
1.4
1.3
&(o)
1.2
4

3 10 13 20
)

Figure 3: Effective temperature factor

the systems down to an effective set of order parame-
ter equations. There is not space here to fully discuss
the complete reduction of the system, but the two order
parameters we have introduced are R, and v. Instead
of R we can make used of the easily observable order
parameter M = p, — p_, which is just the difference
in the densities of ants on the nodes in the two states.
In this regard this order parameter is similar to the or-
der parameter of a gas-liquid transition, where p+ would
represent the density of the liquid and p~ the density of
the gas. We can illustrate the phase transition at the
critical temperature T, and the resulting emergence of
the order parameter M in Fig. 5(a). This behavior of the
order parameter versus the temperature is reminiscent
of equilibrium phase transitions in physics. The critical
temperature is given, in terms of the other parameters

as
7

TTtv+260+673 622

We can also plot the order parameter as a function of 4.
that is, the equations of state, shown in Fig. 5(b), clearly
illustrating both the second and first order transitions.
Very close to the critical points, the order parameter
scales according to critical exponents which are inde-
pendent of the particular parameters of the system. For
instance, we obtain the mean-field critical behavior

M ~|T = T2,

(37)

[

(38)

4.3 Spontaneous symmetry breaking

The critical points of the homogeneous phase are given
by the condition x(v.) = T/~., which has solutions

s B=26-1%/FT=20=1p6 1

Y = (1 1 5) - (9)
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Figure 4: Plots of (a) the order parameter as a function
of temperature, and (b) the equations of state for varying
values of 6.

where 7, is the value of y where the symmetric phase be-
comes unstable as v i3 increased, and v} is the value of ¥
where the symmetric phase again becomes stable. These
critical points are independent of the order parameter v
as could be expected, since in the homogeneous phase
v does not really exist. These critical points themselves
are the result of a bifurcation controlled by 6. This bi-
furcation only occurs for delta below the critical point

_(1=T1)3
0< b = T (40)
When 6 > §. no symmetry breaking is possible, irrespec-
tive of v,

The broken symmetry states and critical points can
be found from the Lyapunov function for the swarm

Yo Q?,’;"-(l+61+6w)-ﬁ-’ﬁ¥(l+7+61+w+ow)

B (1874671487420 -+ yu+ By + B
+26%393u4+8yv3 +673034634703)

— B (By + 613 486997 420 4 yu~Byw 4 Ba u+ 28747

+.,ul .',owl +J.'2 vl -0-6"7’0')

(A)
N Triwtobie (Myeterstic) Phase

I: Homeganeous Phase

(8)

First OrderTranesitions
Second Order Tranesitions
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Figure 5: § — v phase diagrams.

+ ﬂ';--“(‘7-}-61+v.v+111.-+6~n,-)—Rv(6'7+u+6-y-u). (41)

which is calculated as described above. There is a region
of tristability, where either the inhomogeneous phase
or the homogeneous phase are possible. Which is cho-
sen will depend on the initial conditions, and hysteresis
(multiple values of the order parameter for the same val-
ues of the staie variables) is possible. For a given § this
region extends from v} < 4 < 4%(v), where 7° mark the
location of a first order transition. For certain case v2(v)
as a function of 6 can be calculated analytically, but we
will usually have to resort to Newton's method, or some
other numerical scheme. All of this information can be
ilustrated by plotting the critical points y* and ~9(1)
as a functions of §. The resulting phase diagram shown
in Figure 4 illustrates the regions of symmetric phase,
bistability and tristability. This plot is a simple illus-
tration the effect of behavioral and swarm parameters
on the swarm as a whole, and the relation these effects
to each other. In this case § is a behavioral parameteor
which could be expected to change on the evolutionary
time scale, and <, which is proportional to the number
of participants, is a swarm parameter which determines



the behavioral “phase” of the swarm.

In general the various inhomogeneous states labeled
by v will become .nstable at different values of 7. In
this case we can have a quite complicated sequence of
ordering transitions as 7 is increased. [n this regard
the presence of the first order transition boundaries will
play an important role. This is because after an ini-
tial syrnmetry breaking occurs upon passage through a
second order transition, this broken symmetry state can
itself become unstable for non-:ero value of the crder pa-
rameter M. These first order instabilities can produce a
cascade, or hierarchy of ordering transitions. This order-
ing can be used to explore some other experiments with
actual ants, but due to its complexity and the limited
space here, whole subject is best taken up elsewhere.®

4.4 Swarms on a lattice

All of the above results hold when the configuration
space is not continuous but a lattice. Such is the case
in many of the laboratory experiments with actual ants
which have been recently been studied.?! In these ex-
periments ants are allowed to walk on bridges connected
together in a somewhat arbitrary way, forming a net-
work. Detailed balance is imposed by the experimental
setup where at each “fork in the road” an ant can chose
only between geometrically equivalent alternatives. The
topology of the network is defined by a connection ma-
trix, and the swarm can be described the aiscretized
equations
do* _ ' i i
pigs = Z:vo(W-'jP’ - W;ip') + f*, (42)
J
i
- =
where in this case different values of n* in each segment
are allowed. The particle densities are slaved to the
pheromone densities via the quasi-stationary distribu-
tion

-k o' +n'p. (43)

i _ _Nexp(=pU(d"))

>, i exp(=pU(09)

All of the previous result hold, except now the order

parameter v is constrained to a discrote set of values v =

Y pi+/ X py- , where u,: are the lengths of the bridges

in the + mode. A discussion of how these equations

lead to the various type of observed behaviors in the

experimental situations has been published elsewhere.?2

Millonas (1993).

1 Deneubourg, et. al.

7M. M. Millonas. J. Theor. Biol (in press,1992b); In: Cooper-
ative Phenomena and Celiular Automata , (in press, 1993c).

(44)

4.5 Incorporation of fluctuations

The results above show how the essentiaily infinite de-
scription for the pheromonal field is reduced to the bi-
modal field equations ¢* = —x 0% + 5 p*. Making use
of the results at the end of section 3.2. this lead to a
bimodal set of Langevin equations

do* ——
7 (Ap=)?)

Ca Vi

which leads to a Fokker-Planck equation

Orp(0*t.07) = 8,+ (K 0t = (p*))0))

-n o +1n (pt) + St ely)

+05- ((x 07 = (p7))p))

+3 (B2 (@0 1p) + B2 (A0~ Pp)) . (46)
where Eq. 45 has been interpreted in the [to sense.

A more or less complete description incorporating
the fluctuations is possible,® which we outline here. In
the region of the non-equilibrium phase transition the
stable mode S = (6% + v 07 )/(l + v) can be adiabati-
caily eliminated from the picture, this time directly from
Eq. 46. We can then write down a one dimension
Fokker-Planck equation for the order parameter density
p(M) which has an analytic solution. The resulting so-
lution allows the exploration of the effect of the fAuctu-
ations near the non-equilibriurn phase transitions, and
a treatment of the influence of fluctuations. not only on
the critical exponents as in the case of equilibriusn phase
transitions, but also on the critical points. Since the crit-
ical points thernselves will depend on the strength and
type of fluctuations, the fluctuations may play a active,
creative role in the production of order in the vicinity of
a non-equilibrium phase transition.

" IMillonas (1993).
“Millonas (1992).
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